
Abstract. Pure di�usion quantum Monte Carlo calcula-
tions have been carried out for Be2 and the weakly bound
group 12 dimers Zn2, Cd2 and Hg2. We have applied
relativistic energy-consistent large-core pseudopotentials
and corresponding core-polarization potentials for the
group 12 atoms. The derived spectroscopic constants
(Re, De, xe for Zn2 and Cd2 (Zn2: 3:88 � 0:05 ÊA,
0:024 � 0:007 eV, 25� 2 cmÿ1; Cd2: 4:05 � 0:03 ÊA,
0:031 � 0:005 eV, 21� 1 cmÿ1) are in good agreement
with corresponding coupled-cluster results (Zn2: 4:11 ÊA,
0.022 eV, 21 cmÿ1; Cd2: 4.23 ÊA, 0.029 eV, 18 cmÿ1) and
available experimental data (Zn2: 0.034 eV, 26 cm

ÿ1; Cd2:
0.039 eV, 23 cmÿ1). A comparison with previous results
for the heavier homologue Hg2 is made. Using a multi-
reference trial wavefunction for Be2 we achieved a
su�ciently accurate description of the nodes of the
wavefunction to obtain a bonding interaction within
the ®xed-node approximation. The applicability of this
approach has been justi®ed in pseudopotential and all-
electron calculations. Covalent bonding contributions
which appear in addition to pure van der Waals inter-
actions for these molecules are analysed in terms of local
occupation number operators and the associated inter-
atomic charge ¯uctuations. Static dipole polarizabilities
for group 12 atoms and dimers are calculated using a
di�erential quantum Monte Carlo method for ®nite
external electric ®elds. We have extended this method to
pseudopotential calculations by taking into account the
electric ®eld dependence of the localized pseudopoten-
tials. Within the statistical uncertainties our results agree
with those from coupled-cluster calculations.
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1. Introduction

The dimers of the group 12 atoms Zn, Cd and Hg have
only a very weakly bound 1

P�
g �0�g � ground state, but

several well-bound excited states and were considered as
possible candidates for excimer laser substances. There-
fore, these systems have been frequently studied in the
past both by experimentalists [1±5] and theoreticians [6±
15]. The weak bonding interaction in the ground state
is usually denoted as a van der Waals or dispersion
interaction. Highly correlated wavefunctions including
at least scalar-relativistic e�ects are needed to get reliable
answers for the spectroscopic constants [7, 10, 11, 15].
Size-extensive standard correlation approaches like
coupled-cluster methods together with quite large one-
particle basis sets and relativistic pseudopotentials yield
satisfactory results after correction of the basis set
superposition error [15].

In the present contribution, we want to explore the
quantum Monte Carlo (QMC) method as an alternative
correlation treatment. It is not our intention to surpass
the previously achieved results [15], instead the present
work has been done in preparation of QMC studies for
small and medium-sized clusters of Zn and Cd atoms. It
has recently been shown that QMC is a useful approach
for the study of medium-sized Hg clusters [16]. An in-
teresting feature of Cd, Zn, and Hg clusters is the change
of bonding with increasing cluster size from van der
Waals interaction through covalent to metallic types of
bonding occuring already at a relatively small number of
atoms. QMC seems to be well-suited to study size-de-
pendent properties since the method scales quite favour-
ably with cluster size. For small clusters the bonding is
mainly of the van derWaals type. Recent QMC studies of
the van der Waals dimer He2 by Anderson et al. [17]
yielded a very accurate potential curve, and proved that
QMC techniques can also be applied to very weakly in-
teracting systems despite the inherent statistical uncer-
tainties in any practical QMC calculation. In the case of
the group 12 dimers two problems occur. First, the
number of electrons to be considered is at least an order of
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magnitude larger (Zn2 � 60, Cd2 � 96, Hg2 � 160) and
the shells giving the main bonding contributions are of
di�erent main quantum number [(n)1)d and ns, n= 4, 5,
6 for Zn, Cd, Hg]. Second, relativistic e�ects will con-
tribute and cannot be entirely neglected for accurate
work, e.g. at least a scalar-relativistic scheme is needed.
Relativistic energy-consistent large-core pseudopoten-
tials (PP) treating Zn, Cd, andHg as two-valence-electron
atoms together with the corresponding core-polarization
potentials (PP) reduce the computational e�ort roughly
to that needed for He2, and also allow inclusion of im-
plicitly scalar-relativistic e�ects by means of parametri-
zation. The goal of the present paper is to show that the
combination of pseudopotentials for relativistic e�ects
and QMC for correlation e�ects accurately describes the
weak bonding in the heavy- element systems Zn2 and Cd2
with the same accuracy as previously obtained for
Hg2[11]. Furthermore, we want to demonstrate the fea-
sibility of QMC calculations for static dipole polar-
izabilities since they contribute to the leading order in van
der Waals type interactions.

Bonding in Hg2 has been recently analysed by Kunz
et al. [12]. According to their ®ndings Hg2 should be
thought of as an intermediate between a pure van der
Waals complex and a chemically bound system. Using
a di�erent approach [18] to analyse large-scale multi-
con®guration self-consistent ®eld (MCSCF) wavefunc-
tions Yu and Dolg [15] came to the same conclusion and
found a similar bonding situation for Zn2, Cd2 and Hg2.
The latter analysis was based on interatomic charge
¯uctuations which were determined in a basis of local-
ized atomic orbitals. In the present contribution a sim-
ilar strategy is followed, however, the partitioning of the
wavefunction into atomic subspaces is not achieved
by means of localized orbitals but by a local operator
de®ned in position space. The charge ¯uctuations are
calculated using QMC for the ``exact'' wavefunctions
and compared to the corresponding Hartree-Fock (HF)
results.

For comparison it is also interesting to consider the
Be2 molecule which possesses the same valence electron
con®guration and is well-known for the strong covalent
contributions to the bonding connected with near-de-
generacies [19]. The charge ¯uctuations for this molecule
are compared with those of Zn2, Cd2, and Hg2. The
calculations are complicated by the fact that it is nec-
essary to use a multi-reference trial wavefunction which
takes into account all the con®gurations contributing to
the near-degeneracies.

2. Theory

2.1. Pseudopotentials and valence basis sets

Quasirelativistic energy-consistent ab initio pseudopo-
tentials have been used to replace 28, 46 and 78 core-
electrons for Zn, Cd and Hg, respectively, i.e. only the
ns shell (n = 4, 5, 6 for Zn, Cd and Hg) is treated
explicitly for the atomic ground states. The scalar-
relativistic molecular valence model Hamiltonian in
atomic units,

H �ÿ 1

2
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contains for each electron i a molecular pseudopotential
Vpp�i�, which is assumed to be a superposition of
semilocal atomic terms
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i and j are electron indices, m and l are core indices. Qm
denotes the charge of the core m. l is the angular
quantum number and Pm;l denotes the projection oper-
ator on the angular symmetry l with respect to core m. In
the energy-consistent pseudopotential method the free
parameters in the radial pseudopotential Vm;l are adjusted
to reproduce total valence energies derived from all-
electron calculations for a multitude of many-electron
states. The semiempirical core-polarization potential
VCPP accounts for static and dynamic core-polarization,
i.e. non-frozen-core e�ects at the uncorrelated level and
core-valence correlation e�ects at the correlated level.
We adopt a form originally introduced by MuÈ ller et al.
[20] and previously applied by Fuentealba et al. [21] to
pseudopotential calculations:

VCPP � ÿ 1
2

X
m

am
~f 2

m �3�

with the electric ®eld ~fm at core m multiplied by a cut-o�
function
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�
X
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The Hg pseudopotential and core-polarization po-
tential have been taken from previous work [22]. The
corresponding parameters for Zn and Cd are listed in
Table 1. Even-tempered di�use basis functions were
added to optimized (4s4p) valence basis sets. For cou-
pled-cluster calculations the basis sets were further ex-
tended by polarization functions. A single exponent for
d, f and g type basis functions was optimized in atomic
con®guration interaction calculations. From these ex-
ponents we generated the polarization basis sets again
in an even-tempered manner. The ®nal uncontracted
(7s7p5d3f 1g) and (6s6p5d3f 1g) valence basis sets for Zn
and Cd, respectively, are listed in Table 2.

2.2. Correlation treatment

In order to obtain reference data for comparison with
the QMC results we performed large-scale coupled-
cluster calculations including single and double excita-
tion operators as well as triple excitations by perturba-
tion theory (CCSD(T)), similar to those reported
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previously for Hg2 [10]. These calculations were carried
out with the MOLPRO program system [23]. Pure
di�usion Monte Carlo (PDMC) has been applied as
described in detail in our previous work on Hg2 [11].

2.3. Dipole polarizabilities

The dispersion interaction in weakly bound van der
Waals molecules can be expressed in terms of the static
and dynamic dipole polarizabilities of their constituents
[24]. Calculation of dynamic polarizabilities within the
QMC method, is faced with conceptual di�culties and
has been performed for two-electron systems only [25±
27], so far.

Static dipole polarizabilities aD can be calculated in
QMC either by the di�erential QMC method proposed
by Wells [28] or by the in®nitesimal di�erential di�usion
QMC method of Vrbik et al. [29]. In the ®rst approach
small ®nite ®elds are applied to the system and the total
energies are determined from a correlated random walk

which enables an accurate calculation of energy di�er-
ences. This approach has been applied by Huiszoon and
Briels [30] for the calculation of the static dipole polar-
izabilities of He and H2. Although energy di�erences can
be obtained with a much higher absolute accuracy than
total energies, its application to polarizabilities requires
second derivatives which are numerically more de-
manding. In order to avoid these di�culties Vrbik et al.
[29] performed the di�erentiation of the energy expec-
tation value with respect to an external ®eld analytically,
and sampled the resulting cumulant like expression of
the dipole moment using an almost accurate sampling
algorithm for the exact electron distribution [31, 32].
Within their formalism it is also possible to calculate
hyperpolarizabilities with reasonably small statistical
errors, e.g. their results for LiH are in good agreement
with those of other ab initio calculations.

So far these methods have only been applied in all-
electron calculations. Pseudopotentials introduce a slight
di�culty in this approach, since they depend in its lo-
calized form implicitly on the external ®eld due to the
response of the localization function on the external
®eld. The second derivative @2kE�k�jk�0 of the energy
expectation value for the exact ®eld-dependent ground-
state wavefunction w�k� with respect to the ®eld strength
k of an external homogeneous electrostatic ®eld depends
only on the ®rst derivative @kw�k�jk�0 taking advantage
of the Hellmann-Feynman theorem. In QMC w�k� is
generated from a trial wavefunction U�k� by

W�k� � lim
s!1N�s�exp�ÿ�Ĥ0 � V̂ k�s�U�k� ; �5�

where V̂ k includes all the ®eld-dependent parts in the
Hamiltonian and N�s� represents a s dependent normal-
ization constant. For correlated random walks it is
convenient to replace U�k� in Eq. (5) by U�0�, which
permits performance of a random walk independent of
the ®eld strength [28]. In our ®rst application to the
atoms Zn, Cd and Hg where we have a two-electron
ground-state wavefunction without nodes, it is possible
to omit the ®eld dependence of the trial wavefunction U
without any loss of accuracy. In the more general case of
Zn2, Cd2 and Hg2 where the trial wavefunction is used to
specify the nodes the situation is somewhat di�erent.
Neglecting the response of the nodes on the external ®eld
imposes an additional approximation whose implica-
tions have not been studied so far systematically. We
only want to mention that the results of Vrbik et al. [29]

Table 2. Valence basis sets for Zn, Cd and Hg

Zn Cd Hg

s 1.572755 1.599911 1.354842
1.198905 0.742260 0.828892
0.148856 0.116465 0.133932
0.051016 0.042854 0.051017
0.020406 0.014285 0.017
0.008163 0.004762 0.006
0.003265

p 1.090807 0.888189 1.000146
0.215688 0.166089 0.866453
0.072211 0.059624 0.118206
0.023185 0.020334 0.035155
0.009274 0.006778 0.012
0.003710 0.002259 0.004
0.001484

d 1.375 1.1875 1.188
0.55 0.475 0.475
0.22 0.19 0.19
0.088 0.076 0.076
0.0352 0.0304 0.0304

f 0.75 0.725 0.625
0.30 0.29 0.25
0.12 0.116 0.1

g 0.38 0.33 0.28

Table 1. Parameters of the
relativistic large-core (Q = 2)
pseudopotentials and core-po-
larization potentials for Zn, Cd
and Hg

Zn Cd Hg

alk Alk alk Alk alk Alk

s 1.498802 18.316720 1.4399372 15.5730800 10.000248 48.780475
0.749005 )3.405011 0.2322784 )0.3737086 1.657530 27.758105

0.227210 )0.696178
p 1.532770 11.464304 1.4594146 10.3781361 0.647307 8.575637

0.787091 )1.327391 0.9706640 )0.0041229 0.398377 )2.735811
d 0.750276 1.583946 0.3748675 1.6664640 0.386058 2.792862

0.374792 0.333476 0.6533233 )0.1895933 0.217999 )0.013118
f 0.466699 )0.398428 0.9762389 )11.2057425 0.500000 )2.635164
d, a 0.3893 2.296 0.3032 4.971 0.2380 7.377
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for LiH are based on this approximation and yield good
agreement with experimental values and other ab initio
methods. Altogether, we obtain an expression for
@2kE�k�jk�0 which depends on the ®rst and second
derivative (@kV̂kjk�0; @2k V̂kjk�0) of the ®eld-dependent
potential V̂k only. In order to take this into account we
have performed a Taylor expansion of the localized
pseudopotential in terms of the external ®eld:

VppU�k�
U�k� �

VppU�0�
U�0� � @k

VppU�k�
U�k�

���
k�0

k

� 1

2
@2k

VppU�k�
U�k�

���
k�0

k2 . . . : �6�

Since we are not interested in the total values for E�k�
but only in its second derivative @2kE�k���k�0 it is not
necessary to go beyond second order in the expansion.
Higher-order terms which a�ect E�k� will cancel for the
derivative.

In QMC a spin-free formalism is employed where
the spatial wavefunction is given by a product
U � F jUajjUbj with correlation factor F and Slater
determinants jUaj and jUbj, which provide the correct
permutational symmetry for fermions, see e.g. Ref. [33].
Since Vpp is a one-body operator the localized pseudo-
potential (Eq. 6) can be split up into two equivalent parts
which act on jUaj and jUbj separately. In the following,
we will suppress a and b and assume that all the indices
are running over the corresponding subset only. The
inverse of a Slater matrix (®rst index refers to the elec-
tron, second index to the orbital) which belongs to a
Slater determinant jUj is denoted by jUjÿ1.

The left-hand side of Eq. (6) can be brought into a
form suitable for computation [34, 35]X
i;k;l

Vl�ri�Zl0�0; 0�
Z

dX0iZl0�u0i; h0i�

� F �. . . ;~r0i; . . .�
F �. . . ;~ri; . . .�/k�~r0i�Uÿ1ik �. . . ;~ri; . . .� ; �7�

where Zlm denotes real spherical harmonics. The two-
dimensional angular integral has to be done numerically.
From this expression it is straightforward to obtain the
®rstX
i;k;l

Vl�ri�Zl0�0; 0�
Z

dX0iZl0�u0i; h0i�
F �. . . ;~r0i; . . .�
F �. . . ;~ri; . . .�

� �@k/k�~r0i�Uÿ1ik �. . . ;~ri; . . .� � /k�~r0i�@kU
ÿ1
ik �. . . ;~ri; . . .�� �8�

and secondX
i;k;l

Vl�ri�Zl0�0; 0�
Z

dX0iZl0�u0i; h0i�
F �. . . ;~r0i; . . .�
F �. . . ;~ri; . . .�

� �@2k/k�~r0i�Uÿ1ik �. . . ;~ri; . . .� � /k�~r0i� @2kUÿ1ik �. . . ;~ri; . . .�
� 2@k/k�~r0i�@kU

ÿ1
ik �. . . ;~ri; . . .�� �9�

derivative with respect to an external electric ®eld. We
have assumed that the correlation factor F does not
depend on the electric ®eld. The derivatives @k/k and
@2k/k of the orbitals can be expressed in terms of the
derivatives of the orbital coe�cients in the basis set. This

makes the calculation of the higher-order terms straight-
forward since the derivatives of the coe�cients can be
calculated in advance by numerical di�erentiation using
orbital coe�cients from ®nite- ®eld HF calculations. The
®rst and second derivatives of the inverse Slater matrix
Uÿ1 and Slater determinant jUj do not require any
further ®eld-dependent components:

@kU
ÿ1
ij � ÿUÿ1ik @k/l�k�Uÿ1lj ; �10�

@kjUj � Uÿ1ik @k/i�k�jUj ; �11�
@2kU

ÿ1
ij � ÿ @kU

ÿ1
ik @k/l�k�Uÿ1lj ÿ Uÿ1ik @k/l�k�@kU

ÿ1
lj

ÿ Uÿ1ik @
2
k/l�k�Uÿ1lj ; �12�

@2k jUj �
"
Uÿ1ik @

2
k/i�k� � @kU

ÿ1
ik @k/i�k��

@kjUj
jUj

� �2
#
jUj :

�13�
Here we have assumed Einstein's summation convention
for indices occuring twice. Equation (10) can be
immediately obtained from the de®nition of the inverse
Slater matrix

dij � Uÿ1ik /j�k� �14�
by di�erentiation with respect to the external electric
®eld. The derivative of the Slater determinant (Eq. 11)
can be obtained similarly to the derivatives for the
cartesian coordinates (see e.g. [36]). From these equa-
tions the second derivatives can be obtained in a
straightforward manner.

The Taylor expansion of the localized pseudopoten-
tial with respect to the external electric ®eld strength k
introduces possibly singular terms of the general form
@n

kU=U at the nodes of the trial wavefunction U. An
exception are two-electron systems as in our treatment
of Zn, Cd and Hg, where U has no nodes. The degree of
these singularities is important for applications of this
method to larger systems. In our calculations we have
assumed ®xed nodes which do not depend on k. In this
case it seems plausible to suppose that the ratio between
trial wavefunctions at ®nite ®eld U�k� and at zero ®eld
U�0� also remains ®nite close to the nodes. If we further
suppose that a Taylor expansion of this ratio

U�k�
U�0� �

X
n�0

@n
kU�k�
U�0�

���
k�0

kn

n!
�15�

can be performed which remains valid close to the nodes
of the trial wavefunction, the ratios @n

kU=U are required
not to diverge near the nodes. Therefore, the higher
order terms in Eq. (6) are not more singular than the
zeroth-order term. Unfortunately this is not exactly true
in practical calculations. We have already mentioned
above that the derivatives of the orbitals with respect to
the external electric ®eld are obtained from conventional
HF calculations. Since we cannot impose a ®xed-node
boundary condition in these calculations our calculated
@n

kU=U may show a singular behaviour close to the
nodes. Nevertheless, in our present applications to
Zn2,Cd2, and Hg2 we encountered no such di�culties,
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but this might be di�erent for other systems. Since this
problem concerns only a small portion of the con®gu-
ration space it should be possible to introduce some cut-
o� procedure for the higher-order terms near the nodes.

In our calculations of static dipole polarizabilities we
have used the ®nite-di�erence approach in combination
with the PDMC method of Ca�arel and Claverie [37].
The energy is calculated via the time-dependent equation

E�s; k� � hU�0� j �Ĥ 0 � V̂k� exp ÿ�Ĥ 0 � V̂ k�s
� � jU�0�i

hU�0� j exp ÿ�Ĥ0 � V̂ k�s
� � jU�0�i

� lim
T!1

R T
0 dt 12 �EL�k;~rt� � EL�k;~rt�s�� exp ÿ

R t�s
t EL�k;~rs�ds

� �
R T
0 dt exp ÿ R t�s

t EL�k;~rs�ds
� � ;

�16�
with the local energy

EL�k;~r� � Ĥ0U�0�
U�0� � V̂ k �17�

and the ®eld-dependent local potential

V̂ k � @k
VppU�k�
U�k�

���
k�0

k� 1

2
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VppU�k�
U�k�

���
k�0

k2

�
X

i

zik� VCPP �k� ; �18�

for an electric ®eld parallel to the z axes. The right-hand
side of Eq. (16) represents a fraction of path integrals
extending over all paths of length s which are generated
by the stochastic di�erential equation

d~x � rU�0�
U�0� dt � d~W �19�

where ~W is a Wiener process. Since the trial wavefunc-
tion does not depend on the electric ®eld the random
walk is the same for di�erent values of k. This is
equivalent to Wells approach [28] but involves no
branching at all. The e�ciency of the PDMC method
compared to algorithms involving a branching step has
been discussed elsewhere [38]. In the limit s!1 we get
the ``exact'' ground-state energy for the SchroÈ dinger
equation. From a single PDMC calculation one can
obtain E�s; k� for di�erent values of s; k without
signi®cantly increasing the computational e�ort com-
pared to a single ground-state energy calculation. For a
®xed value of s we computed the static dipole polariza-
bility aD�s� by numerical di�erentiation, according to
aD�s� �
2�E�s; 2k� � E�s;ÿ2k�� ÿ 32�E�s; k� � E�s;ÿk�� � 60E�s; 0�

24k2

�20�
From this data we took the limit aD � lims!1 aD�s�. The
convergence with respect to s is plotted in Fig. 1. We
tried k � 0:01; 0:001 and obtained perfect agreement
within the statistical uncertainties. We want to mention
that the expansion of the localized pseudopotential is
crucial to obtain a reasonable result. For the Hg atom

we got, e.g. aD � 31:9� 0:4 a.u. including only the linear
term which di�ers by 4 a.u. from the aD including the
second-order term.

2.4 Spectroscopic constants

The CCSD(T) spectroscopic constants were derived by
®tting a ®fth-degree polynomial in R times a factor 1/R
for six calculated points on the potential curve near the
equilibrium distance. A spacing of 0.1 a.u. between the
points was used. The estimated numerical accuracy of
the molecular constants is 0.01 eV, 0.01 AÊ and 1 cmÿ1.

Due to the statistical uncertainties of the calculated
energies at individual points of the potential curve a
somewhat di�erent approach had to be used for PDMC.
To get reasonable estimates for the spectroscopic con-
stants we supposed a simple Born-Mayer-type ansatz[39]
for the potential curve

VBM � ÿ C
R6
� b exp�ÿaR� ; �21�

where the three independent parameters are optimized
by a least-squares ®t for a given set of energies at
di�erent interatomic distances. Since all the PDMC
energies along the potential curve are statistically
independent, it is possible to sample energies used in
the least-squares ®t and to obtain an estimate for the
statistical error of the parameters. In each point we have
sampled an energy from a Gaussian distribution with
mean value and variance taken from the corresponding
PDMC calculation. In order to check the reliability of
the variance we have performed a Kolmogorov-Smirnov
test [40] with our PDMC data see to see whether the
variance is determined from a Gaussian distribution of
statistically independent energies. This requirement was
satis®ed with good accuracy in all of our PDMC
calculations. For these energies we have optimized the
parameters of the potential and determined the spectro-
scopic constants. Repeating this procedure we obtained
statistically independent sets of spectroscopic constants
whose ¯uctuations represent the statistical uncertainties
of the underlying PDMC energies.

Fig. 1. Convergence of the dipole polarizabilities aD�s� for Zn (solid
line), Cd (dashed-dotted line) and Hg (dashed line) with respect to s

235



2.5 Analysis of charge ¯uctuations

The bonding analysis has been performed on the basis of
occupation number operators N̂ de®ned in position
space. Consider the homonuclear diatomic molecule to
be aligned along the z-axis with the centre of mass in the
origin. The space is then partitioned between both atoms
by the plane z � 0 and the occupation operator for the
atom located on the positive z-axis can be de®ned as

N̂ �
Xn

i�1
H�zi� �22�

using the Heaviside's step function H�zi�. Its square is
given by

N̂
2 � N̂ �

Xn

i6�j

H�zi�H�zj� : �23�

Obviously for the systems considered here the average
valence occupation < N̂ >� 2, independent of the
wavefunction, and < N̂ 2 > can be obtained using the
fully generalized Feynman-Kac formula of Ca�arel and
Claverie [37]:

hU jexp �ÿĤ s
2� N̂

2
exp�ÿĤ s

2� jUi
hUj exp�ÿĤs�jUi

� lim
T!1

R T
0 dtN̂

2�~rt�s
2
� exp ÿ R t�s

t EL�~rs�ds
� �

R T
0 dt exp ÿ R t�s

t EL�~rs�ds
� � : �24�

For s � 0 we obtain the expectation value for the trial
wavefunction U. In the limit s!1 it converges to the
expectation value of the ``exact'' ground-state wavefunc-
tion. As discussed above the term ``exact'' has always to
be understood within the ®xed-node approximation. The
charge ¯uctuation dN is given by

dN 2 � hN̂2i ÿ hN̂i2 : �25�
The peculiar feature of this method is that the charge
¯uctuations can be calculated for arbitrary wavefunc-
tions including the ``exact'' ®xed-node wavefunction
which gives a correct description of the bonding in these
weakly bound molecules.

For heteronuclear diatomics, polyatomic clusters or
molecules as well as solids the partitioning into atomic

domains is less straightforward than for homonuclear
diatomics. The use of Bader's zero-¯ux surfaces [41]
appears to be a reasonable choice here.

3. Results and discussion

3.1 Atoms

The dispersion interaction for homonuclear dimers can
be calculated with an approximation to London's
formula, i.e.

DEdisp � ÿ3IP1a2D=�4R6�: �26�
It is clear that any computational approach aiming

at accurately calculating DEdisp has to yield good results
for the ®rst ionization potential �IP1� and the dipole
polarizability aD of the neutral atom. The corresponding
CCSD and PDMC values are summarized in Tables 3
and 4. At the self-consistent ®eld (SCF) level the largest
error in the IP is 0:04 eV (Hg) and in the dipole polari-
zability 2.6 a.u. (Hg). Since these errors are largest for the
heaviest element of the group we mainly attribute them
to frozen-core errors. The inclusion of core-valence
correlation (CPP) and valence correlation (CCSD) in-
creases IP1 by about 1:5 eV. The theoretical values are
still about 0:2ÿ 0:3 eV smaller than the experimental
results. The PDMC results are in excellent agreement
with the CCSD values with a maximum deviation of
0:03 eV. Signi®cantly better agreement between theory
and experiment was obtained for small-core pseudopo-
tentials [15]. However, such an approach is currently
infeasible for the QMC study of the homonuclear dimers.

Dynamic and static polarization of the M2� cores
(CPP) leads to a reduction of the dipole polarizability aD
by up to 30% , whereas the inclusion of valence corre-
lation (CCSD) has only minor e�ects. The calculated
values are about 1:5ÿ 3:0 a.u. too large compared to
previous theoretical results using a small-core pseudo-
potential [15]. The PDMC results agree within the sta-
tistical errors with the CCSD values. A possible
explanation for the discrepancies between small- and
large-core pseudopotential calculations is the neglect of
correlation e�ects on the core polarizabilities used in Eq.
(3). We have tried to take this into account by using core
polarizabilities obtained from ®nite-®eld CCSD(T) cal-
culations with relativistic small-core pseudopotentials.

Table 3. First and second ioni-
zation potentials (IPi) (i = 1, 2)
(eV). AE (all-electron), DHF
(Dirac-Hartree-Fock, PP
(pseudopotential), SCF self-
consistent ®eld, CPP (core-
polarization potential), CCSD
coupled-cluster including single
and double excitation opera-
tors, CCSD(T) coupled-cluster
including single and double ex-
citations, and triple excitations
by perturbation theory, PDMC
pure di�usion Monte Carlo

Method Zn Cd Hg

IP1 IP2 IP1 IP2 IP1 IP2

AE; DHF 7.79 16.85 7.35 15.56 8.55 17.15
PP; SCF 7.77 16.86 7.34 15.56 8.51 17.10
PP, CPP; SCF 8.42 17.82 8.26 16.85 9.74 18.66
PP, CPP; CCSD 9.09 ± 8.78 ± 10.13 ±
PP; CCSD(T)a 9.37 17.93 8.97 16.87 10.37 18.68
PP, CPP; PDMCb 9.11 ± 8.81 ± 10.16 ±
Exp.c 9.39 17.96 8.99 16.91 10.44 18.75

a Small-core pseudopotential Ref. [15]
b Statistical errors are smaller than the last given digit
cRef. [42]
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The results listed in Table 4 show only minor improve-
ments. The remaining discrepancies cannot be explained
in such a simple manner and indicate principal limita-
tions of the CPP method for large-core pseudopotentials.

A slight systematic underestimation of IP1 and
overestimation of aD yields too large absolute values
of London's dispersion energy. The errors are of the
order of 14% for Zn, 12% for Cd and 6% for Hg.
Despite of these inaccuracies the large-core pseudopo-
tentials appear to be su�ciently accurate to be applied to
the study of the weak-bonding interaction in the group
12 dimers.

3.2 The Zn2;Cd2 and Hg2 molecules

The results for bond lengths, binding energies and
vibrational constants of Zn2 and Cd2 are listed in Table
5. Corresponding results for Hg2 [10, 11] are also
included. The experimental binding energy of the group
12 dimers increases from Zn2 to Hg2, whereas the
vibrational frequency decreases at the same time. No
experimental data for the bond lengths of Zn2 and Cd2
are available to our knowledge, however, previous small-
core pseudopotential calculations indicate that the bond
lengths of Zn2 and Cd2 are very similar and about 0:2 ÊA
larger than for Hg2. The present large-core pseudopo-
tential CCSD(T) calculations reproduce well the exper-
imental increase of the binding energy from Zn2 to Hg2.

The largest deviation from experimental values occurs for
Zn2 (0:012 eV), however, the error with respect to a
previous result [15] obtained with a small-core pseudo-
potential is much smaller. The present work predicts the
bond length of Cd2 to be about 0:12 ÊA and 0:46 ÊA longer
than for Zn2 and Hg2, respectively. The derived vibra-
tional frequencies agree with those from previous small-
core pseudopotential calculations within 2 cmÿ1 or less.

Let us now turn to the QMC results for Zn2 and Cd2.
The PDMC and CCSD(T) energies are in good agree-
ment for all points of the potential curve (Fig. 2). The
derived spectroscopic constants listed in Table 5 are in
reasonable correspondence with the CCSD(T) values.
Binding energies are close to the CCSD(T) results,
whereas the vibrational constants are slightly too large.
The most striking di�erences are the shorter PDMC
bond lengths but in view of the ¯at shape of the po-
tential-energy curves this should not be overrated.

As already mentioned for the atoms, dipole polar-
izabilities play an important role for the interaction of
van der Waals clusters. We have therefore performed
some test calculations for the molecules Zn2; Cd2 and
Hg2 for which we have determined the tensor compo-
nent of the dipole polarizability parallel to the molecular
axis. The results listed in Table 5 show that the relative
errors of the large-core compared to the small-core
pseudopotentials are of the same order of magnitude for
atoms and molecules. The PDMC results again agree
very well with those from CCSD(T) calculations.

3.3 The Be2 molecule

The molecules Zn2, Cd2 and Hg2 are well described
within the ®xed-node approximation by a single-refer-
ence trial wavefunction. A more serious challenge for the
®xed-node approximation is the Be2 molecule which is
well-known for the di�culties it provides in standard ab
initio calculations due to the near-degeneracy of the 2s
and 2p atomic orbitals. In order to get a trial wavefunc-
tion for the Be atom which provides a reasonable
description of the nodal structure it is necessary to
include at least the 2s2 and 2p2 con®gurations [46]. This
is equivalent to performing a complete-active-space self-

Table 5. Bond lengths Re (AÊ ),
binding energies De (eV),
vibrational constants xe (cm

)1)
and dipole polarizabilities
aD (a. u.) along the molecular
axes for Zn2, Cd2 and Hg2

aRef. [11]
b Small-core pseudopotential
Ref. [15]
cRef. [1±3]
d Small-core pseudopotential

Method Zn2 Cd2 Hga2

Re PP, CPP; CCSD(T) 4.11 4.23 3.77
PP, CPP; PDMC 3.88 � 0.05 4.05 � 0.03 3.74 � 0.04
PP; CCSD(T)b 3.96 3.96 3.77
Exp.c 3.63 � 0.04

De PP, CPP; CCSD(T) 0.022 0.029 0.044
PP, CPP; PDMC 0.024 � 0.007 0.031 � 0.005 0.056 � 0.007
PP; CCSD(T)b 0.024 0.036 0.044
Exp.c 0.034 0.039 0.043 � 0.003

xe PP, CPP; CCSD(T) 21 18 19
PP, CPP; PDMC 25 � 2 21 � 1 22 � 1
PP; CCSD(T)b 22 20 19
Exp.c 25.7 � 0.2 22.5 � 0.2 18.5 � 0.5

aD PP, CPP; CCSD(T) 102.3 124.8 92.4
PP, CPP; PDMC 102.7 � 1.1 125.4 � 2.1 91.7 � 0.7
PP; CCSD(T)d 95.6 122.1 87.4

Table 4. Dipole polarizabilities aD (a.u.)

Method Zn Cd Hg

AE; DHF 50.8 63.7 44.8
PP; SCF 51.4 65.2 47.4
PP, CPP; SCF 41.8 48.4 34.8
PP; CCSD(T)a 38.3 46.0 34.2
PP, CPP; CCSD 41.5 49.2 35.7
PP, CPP; CCSDc 40.6 48.7 35.2
PP, CPP; PDMC 41.1 � 0.5 49.2 � 0.7 35.9 � 0.3
Exp.b 38.8 � 0.8 49.7 � 1.6 33.9 � 0.3

a Small-core pseudopotential Ref. [15]
bRefs. [43±45]
c CPP with aD from correlated calculations
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consistent ®eld (CASSCF) calculation in the valence
space. With such a trial wavefunction one obtains 99.1%
of the atomic correlation energy in all-electron calcula-
tions. For the Be2 molecule we did not include the full
CAS spanned by two rg, two ru, one pu and one pg
orbitals but rather restricted ourselves to the subset of
con®gurations which contribute in the limit of in®nite
separation. At the equilibrium distance such a MCSCF
wavefunction recovers 98.5% of the CASSCF cor-
relation energy. Our trial wavefunction includes all
closed-shell CSFs and those arising from the
2r1g2r
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con®gurations with all orbitals at most singly occupied.
In Fig. 3 we have plotted the potential-energy curves
obtained from PDMC, CCSD(T) and averaged coupled-
pair functional (ACPF) calculations. The deepest po-
tential well has been obtained from ACPF calculations
and is even lower than that found by Rùeggen and
AlmloÈ f [47]. The agreement between both curves is good
for distances larger than 5 bohr and becomes worse in
the inner region. The PP+CPP approach seems to
overestimate the attractive interactions, leading to a
shorter bond distance of 4.56 bohr compared to 4.67

bohr [47] and 4.627 bohr [19] obtained from all-electron
calculations. The CCSD(T) curve has a similar shape but
is signi®cantly shallower indicating the need for a multi-
reference ansatz for the wavefunction. In our PDMC
calculations we obtained a reasonable shape but again
the potential-energy curve is much too shallow. Al-
though we have used the same reference space as in our
ACPF calculation there still seems to be a ®xed-node
error left. This is not really surprising since previous
studies using MCSCF trial wavefunctions [33, 48] have
shown that taking into account near-degeneracies often
removes only a part of the ®xed-node error. Dynamic
correlation may also have some e�ects on the nodal
structure but a reasonable ansatz for taking it into ac-
count in the trial wavefunction is still missing. Never-
theless we got a bonding interaction which cannot be
obtained from HF nodes where the total energy at the
equilibrium distance is 13.6 millihartree (mH) higher. To
con®rm our ®nding we have performed a single all-
electron PDMC calculation at R=4.63 bohr using the
same type of MCSCF trial wavefunction. We obtained
a total energy of ÿ29:3350� 0:0006 H which is lower
than that obtained by Filippi and Umrigar [48]
�ÿ29:3301� 0:0002 �H with a trial wavefunction includ-
ing the con®gurations 2r2g2r
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2
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1
u1p
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g. The binding energy of 1:9� 1:2 mH is

not very meaningful due the relatively large statistical
error but it clearly indicates that all-electron and
pseudopotential calculations are in good agreement.

3.4 Charge ¯uctuations

Finally we want to discuss the atomic charge ¯uctua-
tions of Zn2;Cd2;Hg2 and Be2. Previous work by MoÈ dl
et al. [18] and Yu and Dolg [15] used occupation number
operators de®ned by means of localized orbitals. Since a
pure van der Waals interaction results from simulta-
neous intraatomic excitations (e.g. s2 ! s1p1 on both
atoms) no charge ¯uctuations were observed, e.g. for

Fig. 3. Potential curves for Be2 from PDMC and other ab initio
methods. Single point PDMC results � are given with error bars.
Extended geminal model of Rùeggen and AlmloÈ f [47] (solid line),
multi-reference PP, CPP, ACPF calculations (dashed-dotted line),
PP, CPP, CCSD(T) calculations (dashed line).

Fig. 2a,b. Potential curves for: a Zn2 and b Cd2 from PP, CPP
CCSD(T) (dashed line) and PDMC (solid line) calculations. The
indicated equilibrium distance relates to the CCSD (T) curve
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He2 at the equilibrium distance. The presence of charge
¯uctuations within this de®nition is only possible at the
correlated level and indicates covalent bonding. For
Zn2;Cd2 and Hg2 roughly 25ÿ 30% of the covalent
bonding contribution was estimated [15]. The present
position space de®nition of the occupation-number
operator yields quite di�erent results. For the SCF
wavefunction in a basis of localized orbitals one ®nds
non-zero charge ¯uctuations since the exponential tail of
an orbital localized on one atom reaches into part of the
space associated with the other atom. This means that
the assignment of localized orbitals to atoms can be
done only in an approximate way. It can be easily seen
that dN2ahH�z�/jH�z�/i where / is the orbital with its
centre on the negative z-axis. Due to the exponential
decay of the orbitals the logarithm of the charge
¯uctuation is a linear function of the bond distance as
can be seen in Fig. 4. Electron correlation, accounted for
at the PDMC level, virtually does not change the
picture. The stronger the covalent contribution to
bonding, the less the electrons are equally distributed
between the two atomic domains, i.e. an increase of the
charge ¯uctuations is observed. The relative magnitude
of the covalent-bonding contributions at equilibrium
distance estimated from

�������������������
< dN 2 >
p

is very similar for
the present and previous de®nitions of the occupation-
number operator (Zn2 < Cd2 ' Hg2).

Of special interest is a comparison with Be2, a system
which is well-known for large covalent bonding contri-
butions [19]. The charge ¯uctuations are signi®cantly
larger than for the group 12 dimers. Electron correlation
has a noticeable in¯uence and we can distinguish be-
tween static and dynamic correlation. For the HF
wavefunction we obtained a nearly linear decrease on a
logarithmic scale for the same reasons already discussed
above. The Variational Monte Carlo (VMC) results re-
fer to expectation values of our trial wavefunction which
includes all the static correlation e�ects. There is also
some dynamic correlation included due to the correla-
tion factor F , but in this special case F is only of minor
importance as can be seen from its small contributions to
the correlation energy. Static correlation suppresses the
charge ¯uctuations considerably with a similar linear
decrease on a logarithmic scale as HF. If we include
dynamic correlation by doing PDMC we get a slight
increase in the charge ¯uctuations compared to VMC.
There is a weak shoulder around 5.5 bohr which appears
at a position where the localized orbital based approach
starts to decrease linearly on a logarithmic scale.

4. Conclusions

PDMC techniques applied together with relativistic
large-core pseudopotentials and core-polarization po-
tentials are able to yield accurate molecular constants for
very weakly interacting systems such as the group 12
homonuclear dimers Zn2;Cd2 and Hg2. The approach is
ideally suited for the study of larger clusters of these
atoms, e.g. in order to investigate the transition from
van der Waals to covalent and ®nally metallic bonding.
The feasibility of PDMC calculations for static dipole

polarizabilities using the ®nite-®eld approach has been
demonstrated. Special emphasis has been given to the
response of the localized pseudopotential to the external
electric ®eld. An analysis of the wavefunction in terms
of charge ¯uctuations obtained for spatially de®ned
operators shows covalent bonding contributions in the
order Zn2 < Cd2 ' Hg2 at the equilibrium distance. For
comparisons we have studied the related Be2 molecule.
Our calculations demonstrate the applicability of QMC
methods even in the case of strong near-degeneracies.
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